If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+8n+6=0
a = 1; b = 8; c = +6;
Δ = b2-4ac
Δ = 82-4·1·6
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*1}=\frac{-8-2\sqrt{10}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*1}=\frac{-8+2\sqrt{10}}{2} $
| 34/30=16/x | | x+2=7/8x-14 | | 5x-10+5x=70 | | -1-6x+5x=-12 | | 196=-w+46 | | -7=-2x+4x-3 | | 7x-1+2x=-37 | | 76-x=294 | | 19=-2x-x-5 | | s/4+2=26 | | 196=-v+293 | | 5m2-3m=0 | | 9+14x=9x+34 | | 69x-7=9+53x | | 4/5x=2000 | | 34x-1=33 | | 75x+10=90x-5 | | 8=4v+8 | | 7*15q=9 | | 24(5x/8)+24(x/12)=24(51/24) | | 4+-x/4=-7 | | |2x+1|=|3x+4| | | 1/5b=8000 | | -53-10x=-163 | | --10+3f=5f+6 | | x/6+1=9 | | x2-5=10.2 | | 2/3x(3x-9)=15 | | 7x+54=-16 | | 11m+2=7m+5-6 | | x2-5=6.1 | | 4x^2=-3(4x+3) |